

VISIONEER White Paper Gene4ic Requirements, Sep 23

2

How to handle Generic Requirements?

1. What are Generic Requirements?

The following Generic Requirements exist in any
project :

• Development Goals (e.g. “economic system”)

• Standards or Regulations (e.g. Safety Rules,..)

• Legal Requirements

• Security and IT Requirements

• Stakeholder or Component Requirements

Generic requirements:

• Are vague requirements

 → They must be linked with a certain bundle of derived
concrete-requirements (solutions)

• Are assigned to a certain entity (e.g. a Vehicle)

 → They must be reused by each member of the
assigned entity separately

• Must be specialzed for each derived sub-entity (e.g. a Pic Up)

•

 → All common requirements of each sub-entity must be
added to the assigned solutions separately

2 . What is the Consequence?

• According to the Single Source of Truth (SSOT), these requirements
may only be defined in one location.

However, duplicates are unavoidable for describing the missing
commonalities and details of each subentity-group and the specific
requirements of each individual group member (instance).

➔ Automatic synchronization of the reused items required

• It must contain all information regarding the reuse rules
(mandatory, erasable, overwritable, proposal etc.)

➔ Automatic verification required, if the reuse rules are followed

• Generic Requirements are incomplete and must be specialized and
detailed (extended) on each subentity level by different
organizations, but must be finally completed on lowest etity-level
(specifcation instance)

➔ Automatic verification required, if each instance is described

completely

Note: This is only achievable with

object-orientent methods and tool support!

VISIONEER White Paper Gene4ic Requirements, Sep 23

3

3. Example: Legal Requirements

In the following simplified example, an ENDA (emission neutral default action) law is

defined in a database for the applicable laws within an automotive-company and is linked

to a bundle of solutions, which are defined in a solutions-library:

As depicted in the following diagram, a linked solution is e.g. a generic template for all

signals, which secures that for each of the signals the Signal Error Reaction and the Error

Storage are specified (to ensure that it is implemented and tested), without defining the

details how this shall be performed (by using the placeholder tbd).

The solution-template, which is in this example valid for the whole company, is then

reused and specialized by various suborganizations. As depicted, each reusing

organization is defining the common requirements for specific entities, which shall be

reused by its suborganizations.

In this example, a business unit has defined a derived template for all Input signals with

details for the error reaction, e.g. what tests shall be performed and the signal

replacement strategy in case of a faulty signal. Additionally,.case relevant requirements

are defined, which are obligatory for the reuse, but its specific decisions shall be taken by

suborganizations.

On project level this example template is reused to create specialized templates that

contain the common requirements for CAN signals and for Services, in which

commonalities (specific case decisions and values) of these signal-types are fixed.

These signal-type specific templates shall be reused e.g. when creating an ECU-

Specification, in which the error handling for each ECU-signal shall be described (for each

signal separately). Finally, in the specification the missing signal specific values and case

decisions must be added, as shown in the following example:

VISIONEER White Paper Gene4ic Requirements, Sep 23

4

4. Solution: Visioneer Tool

The Visioneer Tool is an AddOn (currently only available) for Codebeamer, which handles
textual requirement templates in classes with object-oriented methods. The tool-
functions can be simply executed by pressing one of the following buttons:

The examples tracker “Template Klassen” contains the parent-class IN_Signal_Reqs and
the derived child-classes CAN_IN_Signal_Reqs and IN_service_reqs,, which inherit all
items from their parents and contain all commonalities of these specific signal-types:

The tracker “ECU Spec” contains examples for a controlled reuse of these template

classes in an ECU project specification:

The Visioneer-Tool is performing:

✓ Automatic synchronization of the reused items, regarding parent-changes:

o Adding requirements
o Deletion of requirements
o Modification of requirement structures
o Modification of the text. descriptions
o Modification of decision requirements, attribute field contents or links

✓ Automatic verification,

o if the reuse rules are followed

o if each instance is described completely

More details about it and how to get a Demo Version on our home page:

www.visioneer.info

