
Requirements

In the Loop (RIL)

Tests

Power ON

Drive
?

yes no

... ...

2

Contents

Unrestricted © Visioneer GmbH, 2022

1. Problem to be solved

2. Solution

3. Visioneer RE Process

4. Visioneer-Tool Functions

3

Problem to be solved

Unrestricted © Visioneer GmbH, 2022

How to avoid bad

Requirement-Specifications ?

Bad Requirement-Specifications are causing enormous costs:

Expected Characteristics:

• Necessary
• Traceable Tool support
• Correct available
• Feasible
• Testable
• Complete
• Consistent
• Unambiguous
• Conforming
• Unique

No
sufficient
tool
support *

* Only 50% of the req-characteristcs verifications
can be performed with common metric-tools!

Test Protocol

4

Idea

Unrestricted © Visioneer GmbH, 2022

• Standardization of specifications contents and requirements

syntax

• Classification of functional requirements

e.g. structure or behavior req, goal,..

• Reuse of specification-elements through template-classes

− Specification-Structures and Reqs can be inherited

− Classes can be derived (specialized) or instantiated (copied)

“ Through a smart standardizations of textual requirement-specifications elements

→ All expected characteristics can be automatically verified “

Standardization-Measures: Missing verifications
can be performed:

• Complete
• Consistent
• Unambiguous
• Conforming
• Unique

Automatic
RIL Tests

5

Solution

Unrestricted © Visioneer GmbH, 2022

Visioneer provides the following services/products:

1. RE Consulting services for pilot projects
• Visioneer provides a method consisting of ap. 70 generic RIL test, a method how to handle reqs with classes and

about reusable 50 generic req template-classes → shall be applied and customized in a pilot project

• Goal of the RE consulting is to set up an RE process together with the customer and defining various criteria, the
measures and evidences how to secure all of the required reqs characteristics

2. Visioneer-Tool to perform the missing RIL tests
• Visioneer provides a SW Tool (AddOn for Codebeamer/Doors) that can handle reqs with classes, perform the

missing 50% of the req-characteristcs verifications and create RIL test protocols

Status: 1. version available 26. Apr 23

The RE Consulting services performed together with our consulting partners:
• Engineering People GmbH (EU)

Status: The 1. pilot project (Cariad) will be closed in May 23 → the 2. pilot will start in June 23

• SMSTT (USA/Asia)
Status: ??

6

Visioneer RE Process

Unrestricted © Visioneer GmbH, 2022

Visioneer RE method:

1. Using the described Standardization-Measures

2. Describing reusable reqs or reqs-structures in Classes

3. Definition of an applied RE Process

• Definition of the criteria to fulfil each of the expected reqs characteristics

• Definition of the measures that required to fulfil each criteria

• Creation of automated verifications that generate evidences for each measure

7

Example RE Process

Unrestricted © Visioneer GmbH, 2022

For each of the req characteristics:
the criteria, the measures and the evidences shall be defined
e.g for completeness

Completeness criteria Measures Evidence

Functional completeness • Each stakeholder req must be linked with a system req
• …

CB Metric

Logical completeness • All logical input signal combinations must have clear defined output values VISIONEER Tool

……

The VISIONEER Tool is providing the missing 50% of RIL tests

8

Missing RIL Tests

Unrestricted © Visioneer GmbH, 2022

No evidences can be created with common tools for the following criteria and measures :

Completeness

Criteria Measures

Logical completeness All logical input signal combinations must have clear defined output values

→it shall be verified if all pot. combinations are ´defined

Detail completeness All necessary details shall be defined

→it shall be verified if all mandatory templates items are reused

Complete error

handling and

supplement functions

description

Each of the funct. entities (e.g. signal) shall be described according to an item-template

containing the entity specific (e.g. signal-specific) error handling and supplement functions

→it shall be verified if the spec contains only reqs-structures which are derived from its entity

specific template (System Kit)

9

Missing RIL Tests for el. Systems

Unrestricted © Visioneer GmbH, 2022

No evidences can be created with common tools for the following criteria and measures :

Conforming

Criteria Measures

The req specication structure

shall be conforming to the

system architecture elements

The req specification structure must contain all functional entities of the system

architecture and its IF (Interfaces)

→ It shall be verified, if the req specification structure and its IF is synchronized with the

sys. arch. elements (MBSE) e.g. K-Matrix

10

Missing RIL Tests for el. Systems

Unrestricted © Visioneer GmbH, 2022

Unambiguity Criteria

It shall be clear what library-elements are mandatory

or optional or proposals and what can be

overwritten or deleted

Uniqueness Criteria

Each of the reqs shall be handled according to the

single-source-of-truth

Consistency Criteria

Each member of a functional entity shall all be

described with the same spec-structure items

Measures

The Reuse of templates shall be handled with object-
oriented methods (classes)

→ it shall be verified if the inheritance rules are

followed

11

Visioneer Tool Functions

Unrestricted © Visioneer GmbH, 2022

Version 1 (for Codebeamer) → available 26. Apr 23

- Reqs templates class handling and verification of inheritance rules

Version 2 (for Codebeamer) → planned Sept 23

- Performance of all missing RIL Tests and Test Protocol creation

Version 2 (for Doors) → planned Dec 23

- Same functions as v2.0 for CB

Version 3 (for Doors and CB) → planned Mar 24

- Implementation of MBSE interfaces

12

Unrestricted © Visioneer GmbH, 2022

Visioneer Tool Version 1:

Handling of Requirement Template Classes

13

Unrestricted © Visioneer GmbH, 2022

In this (simplified) example-template generic
requirements are defined
• which are relevant for any signal
• and shall be reused for the signal-reqs of each

signal

Current Req Templates

14

Unrestricted © Visioneer GmbH, 2022

In this (simplified) example-template generic
requirements are defined
• which are relevant for any signal
• and shall be reused for the signal-reqs of each

signal

→ General Reuse-Problems:

• Some reqs are vague and thus not testable

• It is unclear, what reqs are mandatory and what
are proposals

• It is unclear what req is relevant (common) for
which specific entity (e.g. for all CAN signals)

• It is not verified automatically if the reused
templates contain all mandatory items

Current Req Templates

15

Unrestricted © Visioneer GmbH, 2022

In this (simplified) example-template generic
requirements are defined
• which are relevant for any signal
• and shall be reused for the signal-reqs of each

signal

→ General Reuse-Problems:

• Some reqs are vague and thus not testable

• It is unclear, what reqs are mandatory and what
are proposals

• It is unclear what req is relevant (common) for
which specific entity (e.g. for all CAN signals)

• It is not verified automatically if the reused
templates contain all mandatory items

→ High review-efforts
→ A risk for false or missing reqs

Current Req Templates

16

Solution Requirement Template-Classes

Unrestricted © Visioneer GmbH, 2022

With Template-Classes textual reqs can be inherited with object-oriented methods:

• It is defined (via field), if a req is mandatory a proposal

or if it can be overwritten or deleted

• The reqs are classified into different types (e.g. behavior reqs, goals) to be handled (verified) separately

• Only case-spefic reqs are inherited (through simple syntax rules)

• Derived-classes contain all common reqs of the parent- (e.g. Signals) and children-entities (e.g.

CAN_Signals)

• Class-instances are reused to define the reqs of each single entity-member (e.g. for each Input-Signal)

• Cardinalities (e.g. 1..*) for the allowed multiplicities of req-items can be defined

• Without tool change (AddOn for Codebeamer) → no synchronization with MBSE tool needed

17

Solution Requirement Template-Classes

Unrestricted © Visioneer GmbH, 2022

By reusing Template-Classes it is automatically verified,

if all derived-classes and class-instances follow the

inheritance rules of its parents (by the Visioneer-Tool)

18

Example Template-Class

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

19

Example Template-Class

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Item may not be deleted in
child

20

Example Template-Class

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Not testable, child must
be linked with details

21

Example Template-Class

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

decision must be
taken in child

22

Example Template-Class

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

detail must be defined in child

23

Example Derived-Class

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

parent-class relation

24

Example Derived-Class

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

finalization of common reqs for CAN signals

25

Example Class-Instance

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

signal name = instance

26

Example Class-Instance

Unrestricted © Visioneer GmbH, 2022

Type Classification Protection

Class - -

Folder - Mandatory

Folder - Mandatory

Functional Req Functional Goal Proposal

Folder - Mandatory

Functional Req Cond. Beh. Req. Mandatory

Folder - Mandatory

Information - Mandatory

Functional Req Cond. Beh. Req. Mandatory

finalization of signal specific reqs

27

Visioneer Tool Requirements

Unrestricted © Visioneer GmbH, 2022

Tool Requirements:

1. Rules for the class-inheritance

2. Process for the creation of derived classes

3. Process for class instantiation

4. Observing the class rules and error handling

The 1. version of the Visioneer-Tool:
• is an Add-On for Codebeamer

28

1.Rules for class-inheritance

Unrestricted © Visioneer GmbH, 2022

Derived-classes and class-instances shall inherit from its parents:
• all items
• all fields
• all field values, except

Tags, Associations, Downstream
References, Attachments/Comments, Spent Effort, Status values are
not copied from the template (by CB)

29

2. Process for the creation of derived classes

Unrestricted © Visioneer GmbH, 2022

• Derived-classes can only be created in the items template tracker.

• To create a derived class, a folder shall be created with the following syntax:

• After pressing the synchronization-button,
the parent-class is copied, according to
its inheritance rules

• All common reqs for CAN signals can then
be finalized in the derived class

30

3. Process for the creation of class-instances

Unrestricted © Visioneer GmbH, 2022

• Class-Instances may not be created in the items template tracker, but in any
specification

• To create a Class-Instances, a folder shall be created with the following syntax:

• After pressing the synchronization-button,
the parent-class is copied, according to
its inheritance rules:

• Case relevant reqs are only inherited, if the
decision is taken

• All signal specific reqs can then
be finalized in the instance

31

4. Observing the class rules and error handling

Unrestricted © Visioneer GmbH, 2022

After pressing the synch. button, each derived-class and each class-instances shall be verified,

if it follows the inheritance rules of its parents:

• If any mandatory item is deleted

• If text that may not be overwritten is overwritten

• Only allowed case-relevant-decision are taken if if the right case-relevant req is inherited

• If the number of multiplicities are within the range of its cardinalities

• If all items contain a req as child in class-instances

• If all open details are defined in class-instances

→ If any error is detected, it shall be notified in the error-field (mandatory-field)

→ If the error is corrected, the error-field shall be cleared

Thank you for your attention!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32

